

ClubHACK 2007
David Hulton <david@toorcon.org>

Chairman, ToorCon
Director Security Applications, Pico Computing, Inc.
Researcher, The OpenCiphers Project

Midnight Research Labs
The Church of WiFi
The Hacker's Choice

Faster PwninG A ssured: New
Adventures with FPGAs

ClubHACK 2007 2007 © The OpenCiphers Project

Overview

 FPGAs – Quick Intro
 New to 2007! (Since Last Defcon)

 CoWPAtty – WPA Cracking
 VileFault – Mac OS-X FileVault

 New Cracking Tools! (Since ShmooCon)
 BTCrack – Bluetooth Authentication
 WinZipCrack – WinZip AES Encryption
 The A5 Cracking Project – GSM Encryption

 Conclusions

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Quick Intro
 Chip with a ton of general purpose logic

 ANDs, ORs, XORs
 FlipFlops (Registers)
 BlockRAM (Cache)
 DSP48’s (ALUs)
 DCMs (Clock Multipliers)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs (448)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices (10,752)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs (8)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs (72)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s (48)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s
 Programmable Routing Matrix
 (~18 layers)

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 WiFi Protected Access

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 PSK
 MK is your passphrase
 It’s run through PBKDF2

to generate the PMK

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 PSK
 MK is your passphrase
 It’s run through PBKDF2

to generate the PMK

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 PSK
 MK is your passphrase
 It’s run through PBKDF2

to generate the PMK

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 For every possible PMK compute PTK and see if it
matches the handshake captured on the network

ClubHACK 2007 2007 © The OpenCiphers Project

FPGA coWPAtty

 Uses 8 SHA-1 Cores
 Uses BlockRAM to buffer the words fed to the

cores
 As long as the machine is able to supply words

fast enough, the SHA-1 cores will be utilized
fully

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

Cowpatty
800MHz P3 ~25/sec
3.6GHz P4 ~60/sec
AMD Opteron ~70/sec
2.16GHz IntelDuo ~70/sec

Aircrack
3.6GHz P4 ~100/sec

FPGA

Cowpatty
LX25 ~430/sec
1 5 Cluster ~6,500/sec
LX50 ~650/sec

ClubHACK 2007 2007 © The OpenCiphers Project

Results

 Decided to compute hash tables for a 1,000,000
passphrase wordlist for the top 1,000 SSIDs

“That million word list that I fed you incorporated a
430,000 word list from Mark Burnett and Kevin Mitnick
(of all people) and was made up of actual harvested
passwords acquired through some google hacking.
They are passwords that people have actually used. I
padded it out to 1 million by adding things like
websters dictionary, and other such lists, and then
stripped the short word (<8 chars.) out of it.”

ClubHACK 2007 2007 © The OpenCiphers Project

Results

 Finally have the 40GB WPA tables on the tubes
 Thanks Shmoo! (3ricJ & Holt!)
 Check the Torrent trackers for seeds
 CoWPAtty FPGA support has recently been

added to wicrawl

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Pairing bluetooth devices is similar to wifi
authentication

 Why not crack the bluetooth PIN?
 Uses a modified version of SAFER+
 SAFER+ inherently runs much faster in

hardware
 Attack originally explained and published by

Yaniv Shaked and Avishai Wool
 Thierry Zoller originally demonstrated his

implementation at hack.lu

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 How it works
 Capture a bluetooth authentication

(sorry, requires an expensive protocol analyzer)
 This is what you'll see

Master
in_rand
m_comb_key

m_au_rand

m_sres

Slave
master sends a random nonce

s_comb_key sides create key based on the pin
master sends random number

s_res slave hashes with E1 and replies
s_au_rand slave sends random number

master hashes with E1 and replies

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Just try a PIN and if the hashes match the
capture, it is correct

 Extremely small keyspace since most devices just
use numeric PINs (1016)

 My implementation is command line and should
work on all systems with or without FPGA(s)

ClubHACK 2007 2007 © The OpenCiphers Project

 FPGA Implementation
 Requires implementations of E21, E22, and E1 which

all rely on SAFER+
 Uses 16-stage pipeline version of SAFER+ which feeds

back into itsself after each stage
 To explain, here's some psuedocode

Bluetooth PIN Cracking

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+
16 PINs16 PINs

E22

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Output loops back and SAFER+ now does
E21 for the Master

16 clock cycles laterE21

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then does the second E21 for the Slave
and combines the keys to create the link key

16 clock cycles laterE21

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Slave

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Slave

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Master

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Master

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then checks all of the sres values to see if any match
while the process starts over

16 clock cycles laterE22

CompareSRES

Stop
N Y

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 If the cracker stops the computer reads back
the last generated PIN from the pin generator to
determine what the valid PIN was

 The last generated PIN – 16 should be the
cracked PIN

 I built a commandline version
 Thierry Zoller integrated support into BTCrack
 I added some hollywood FX !

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

btpincrack
3.6GHz P4 ~40,000/sec

BTCrack
3.6GHz P4 ~100,000/sec

0.24 secs to crack 4 digit
42 min to crack 8 digit

FPGA

btpincrack
LX25 ~7,000,000/sec
15 Cluster ~105,000,000/sec
LX50 ~10,000,000/sec

0.001 secs to crack 4 digit
10 secs to crack 8 digit

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Somewhat proprietary standard
 No open source code available (until now!)
 Format

 Uses the standard ZIP format
 Adds a new compression type (99)
 Uses PBKDF2 (1000 iterations) for key derivation
 Individual files can be encrypted inside the ZIP file
 Supports 128/192/256-bit key lengths
 Uses a 16-bit verification value to verify passwords
 Otherwise you verify by using the checksum
 Uses a salt (sorry, can't do a dictionary attack!)

ClubHACK 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Cracking algorithm
 Scan through ZIP file until you find the encrypted file
 Get the 16-bit password verification value
 Hash a password with PBKDF2 and see if the

verification value matches
 No – Try next password
 Yes – Decrypt file and see if checksum matches

 No – Try next password
 Yes – Password found!

ClubHACK 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Uses the same PBKDF2 core as the WPA and
FileVault cracking code

 Requires extra iterations for longer key lengths
 Tool takes a ZIP file, encrypted file name, and

dictionary file as input

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

winzipcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

winzipcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 “FileVault secures your home directory by
encrypting its entire contents using the
Advanced Encryption Standard with 128-
bit keys. This high-performance algorithm
automatically encrypts and decrypts in
real time, so you don’t even know it’s
happening.”

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 We wanted to know what was happening

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Stores the home directory in a DMG file
 DMG is mounted when you login
 hdi framework handles everything
 Blocks get encrypted in 4kByte “chunks” AES-

128, CBC mode
 Keys are encrypted (“wrapped”) in header of

disk image
 Wrapping of keys done using 3DES-EDE
 Two different header formats (v1, v2)
 Version 2 header: support for asymmetrically

(RSA) encrypted header

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Apple's FileVault
 Uses PBKDF2 for the password hashing
 Modified version of the WPA attack can be used

to attack FileVault
 Just modified the WPA core to 1000 iterations

instead of 4096
 Worked with Jacob Appelbaum & Ralf-Philip

Weinmann to reverse engineer the FileVault
format and encryption

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Login password used to derive key for
unwrapping
 PBKDF2 (PKCS#5 v2.0), 1000 iterations

 Crypto parts implemented in CDSA/CSSM
 DiskImages has own AES implementation,

pulls in SHA-1 from OpenSSL dylib

 “Apple custom” key wrapping loosely
according to RFC 2630 in Apple's CDSA
provider (open source)

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 vfdecrypt (Ralf Philip-Weinmann & Jacob Appelbaum)
 Will use the same method with a correct password to

decrypt the DMG file and output an unencrypted DMG
file

 Result can be mounted on any system without a
password

 vfcrack (me!)
 Unwrap the header
 Use header to run PBKDF2 with possible passphrases
 Use PBKDF2 hash to try and decrypt the AES key, if it

doesn't work, try next passphrase
 With the AES key decrypt the beginning of the DMG file

and verify the first sector is correct (only needed with
v2)

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Other attacks
 Swap

 The key can get paged to disk (whoops!)
 Encrypted swap isn't enabled by default

 Hibernation
 You can extract the FileVault key from a hibernation file
 Ring-0 code can find the key in memory

 Weakest Link
 The password used for the FileVault image is the same as

your login password
 Salted SHA-1 is much faster to crack than PBKDF2 (1

iteration vs 1000)
 The RSA key is easier to crack than PBKDF2

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

vfcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

vfcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Capturing GSM Traffic
 GNU Radio USRP board ($900 USD)
 We developed software to decode GSM
 Lets you fire up wireshark on a GSM channel
 Can sometimes capture SMS messages
 Couldn't capture voice calls :-(
 We wanted to change that

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Luckily you don't need to break crypto

 India
 IDEA - A5/0
 AirTel - A5/0
 Essar - A5/0
 Orange - A5/0
 Dolphin - A5/0

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Focusing on A5/1
 Used widely throughout the US, Europe, and some

Asian countries
 The strongest algorithm for GSM (3G is better)
 Looking at only practical attacks
 Originally looked at ciphertext only attacks
 Found out that there is a lot of known-plaintext
 Known-plaintext attacks are a lot easier

 Researched a few different attacks
 Real-time attack with known-plaintext + FPGAs

 Anderson & Roe / Keller + our mods
 Pre-computation + less FPGAs

 Biryukov, Shamir, & Wagner + our mods

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 A register is clocked if it's clocking bit agrees with
the majority

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 First 64 clock cycles key is xor'ed with registers
here

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Second, 22-bit frame number is xored in here

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Third, A5/1 is run for 100 clock cycles

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 And then the output is xor'ed with the plaintext

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Using known-plaintext you can reduce the
keyspace by brute forcing R1/R2 and calculating
a matching R3 using the plaintext as parity

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Output bits are related to register bits

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Must essentially brute force the clock bits

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Certain clock bit possibilities can be initially ruled
out by looking at registers that don't get clocked
and output doesn't match

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 After a while certain possibilities can be ruled out
by clock bits not matching output

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 And possibilities can be ruled out once the tap
bits are computed and propagate up the registers

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 With enough known-plaintext you will be able to
resolve all possible R1/R2 down to a valid R3

ClubHACK 2007 2007 © The OpenCiphers Project

Results

 FPGA code requires around 6000 clock cycles for
each R1/R2 state

 100 cores at 100MHz will do 1.6M per sec
 One FPGA will crack key in 15 days
 100 FPGAs will crack in 3.6 hours
 PCs will take a really long time (~2,000 times

slower)
 (code is free and available if you want to offload it

to your botnet ;-)

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Once the internal state of A5/1 is derived you can
reverse clock A5/1 back to the state after the key
is mixed in

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 To reverse A5/1 you calculate the only states for
the clocking bits that are possible

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Eventually there are only a few possibilities left

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time attack

 This can be done quickly in software
 Because there are multiple possible states you need

multiple packets to locate the correct state
 2 packets is enough, we happen to have 4
 Calculate the possible initial states for 2 packets
 Find the possible state that's common between the two

ClubHACK 2007 2007 © The OpenCiphers Project

Decrypting Packets

 If you have the A5/1 state after the key is mixed in
 It is the same as having the key
 You can mix in any frame number and generate

the proper A5/1 output to xor to any ciphertext or
plaintext

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Reversing 64-bits of A5/1 output to 64-bits of A5/1
internal state
 Essentially the same concept as a one-way function
 Rainbowtables are good at reversing one-way

functions
 Decided to focus on building a table of 2^58
 1/64 chance of finding the key with a given packet
 We have 200 different 64-bit A5/1 outputs
 Good chance that we'll find the key

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Time-space tradeoff basics
 You have a one-way function

in out

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Time-space tradeoff basics
 You have a one-way function
 You need to find the in that created an out

in out

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Naïve implementation
 Pre-computation

 Compute and store all possible in/out's
 Real-time

 Search through table until you find your out, it's in is the key

in out

0 8
1 2
2 5
3 1

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Basic time-space tradeoff implementation
 Pre-computation

 Compute an in -> out, and then take the out and compute
another out, etc. (using a “reduction function”)

 Just store the start and end values of the chain

in R(out) ...

0 8
1 2
2 5
3 1

R(out)

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Basic time-space tradeoff implementation
 Real-time

 To reverse a hash, you compute a chain for your out value and
compare all out values with all of the end points in your table

 When you find a matching one, compute a chain from it's start
value

 Your in will be right before your out in its chain

My out ...

0 8
1 2
2 5
3 1

? ? ? ?

out

R(out) R(out)

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Problems with time-space tradeoff
 Algorithms have collisions (especially when you're

mapping output to input which have differing entropy)
 Collisions cause chains to merge or loop
 Different algorithms are used to mitigate this

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Different time-space tradeoff algorithms
 Basic

 Use a different reduction function for different tables
 Increase the amount of tables you have depending on how

collision prone your algorithm is
 Distinguished Points

 Instead of having all of your chains be the same length you
stop when you see a certain pattern of bits

 You can detect collisions and reject chains by looking for other
chains that end in the same distinguished point

 Rainbow
 Use a different reduction function for each stage of the chain
 Requires more real-time computation

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Distinguished Points
 We first assumed that it wasn't very collision prone
 Turned out we were wrong
 Very efficient on FPGAs because it requires really low

bandwidth and table lookups
 Can be used to speed up the real-time lookup phase
 Requires lots of tweaking to find the right parameters to

provide the least number of collisions and loops

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Rainbow tables
 Provides the best collision resistance
 Requires a lot of real-time computation

n(n+1)/2 * chain_length
 The real-time computation can be done on an FPGA

(not as well as DP attack)
 Best attack parameters we could come up with

 Requires 5TB of disk storage
 Can reverse a key in 5 min with 1 FPGA
 Multiple FPGAs can be used to parallelize cracking multiple

keys
 You can adjust table to use less storage and require

more time

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Final Analysis
 Talked to Elad Barkan
 Distinguished Points was the best solution
 Had to reduce chain length to provide the best

collision/loop resistance (average length of 2^19)
 Used a different reduction function for each table
 Provides around 40% coverage (rainbow table

provided only ~20%)
 Still deciding on the best parameters for the tables

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Limiting factor right now is pre-computation
 Computing 2^58 requires ~ 100 FPGAs running for 2

months (6,000 times slower on PCs)
 We have a cluster of 70 FPGAs ready to start

computing
 Once the parameters are finalized we'll be able to

compute a full table in ~3 months
 Will be the largest rainbowtable ever built

 Typical Lanman rainbowtables cover 2^36 at most
 This will be 4 million times larger

 Resulting table will be 2TB

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Result
 Because of hard drive access time it will need to be

spread across multiple hard drives
 6 hard drives and 1 FPGA will crack a conversation in

~30 min
 Double the hard drives and FPGAs to halve the time
 32 FPGAs and a network of 200 PCs will crack a

conversation in < 1 minute

ClubHACK 2007 2007 © The OpenCiphers Project

FPGA Implementation

 Implementation
 Implemented A5/1 as a 64-stage pipeline
 Much more efficient than state-machines
 Get 1 A5/1 per clock cycle
 Output is looped back into the input (after reduction

function is applied) until the last 19 bits are 0
 Results are written to BlockRAM which is polled by the

PC
 Each core runs at 200MHz and 5 cores fit on an LX50
 Total A5/1's/sec is 200,000,000 * 5 = 1,000,000,000
 Single CPU does around 150,000/sec

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Currently building 2TB table
 Will eventually build the 28TB table
 If you want to help, check out wiki.thc.org/gsm

ClubHACK 2007 2007 © The OpenCiphers Project

Hardware

 Pico E-16
 ExpressCard 34

 2.5Gbps full-duplex
 Virtex-5 LX50
 32MB SRAM
 External ExpressCard Chip

ClubHACK 2007 2007 © The OpenCiphers Project

Hardware

 E-16 SuperCluster
 Up to 77 E-16's
 2 Quad-core Xeon's
 8GB of RAM
 6TB HDD Space

Equivalent computing
power of ~400,000 CPUs
for cracking A5/1

ClubHACK 2007 2007 © The OpenCiphers Project

Conclusion

 Get an FPGA and start cracking!
 Make use if your hardware to break crypto
 <64-bit just doesn't cut it anymore
 Choose bad passwords (please!)

ClubHACK 2007 2007 © The OpenCiphers Project

Thanks

 Aaron Peterson (wicrawl)
 The Church of WiFi (CoWPAtty)
 Jacob Appelbaum & Ralf-Philip Weinmann

(FileVault)
 Thierry Zoller & Eric Sesterhenn (BTCrack)
 Steve, Josh, & The Hacker's Choice Cr3w

(A5 Cracking Project)
 The Shmoo Group (bittorrent seeding)
 Viewers like you

ClubHACK 2007 2007 © The OpenCiphers Project

Questions?

 David Hulton
 david@toorcon.org
 http://openciphers.sf.net
 http://www.picocomputing.com
 http://www.toorcon.org

