

ClubHACK 2007
David Hulton <david@toorcon.org>

Chairman, ToorCon
Director Security Applications, Pico Computing, Inc.
Researcher, The OpenCiphers Project

Midnight Research Labs
The Church of WiFi
The Hacker's Choice

Faster PwninG A ssured: New
Adventures with FPGAs

ClubHACK 2007 2007 © The OpenCiphers Project

Overview

 FPGAs – Quick Intro
 New to 2007! (Since Last Defcon)

 CoWPAtty – WPA Cracking
 VileFault – Mac OS-X FileVault

 New Cracking Tools! (Since ShmooCon)
 BTCrack – Bluetooth Authentication
 WinZipCrack – WinZip AES Encryption
 The A5 Cracking Project – GSM Encryption

 Conclusions

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Quick Intro
 Chip with a ton of general purpose logic

 ANDs, ORs, XORs
 FlipFlops (Registers)
 BlockRAM (Cache)
 DSP48’s (ALUs)
 DCMs (Clock Multipliers)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs (448)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices (10,752)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs (8)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs (72)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s (48)

ClubHACK 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s
 Programmable Routing Matrix
 (~18 layers)

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 WiFi Protected Access

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 PSK
 MK is your passphrase
 It’s run through PBKDF2

to generate the PMK

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 PSK
 MK is your passphrase
 It’s run through PBKDF2

to generate the PMK

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 PSK
 MK is your passphrase
 It’s run through PBKDF2

to generate the PMK

ClubHACK 2007 2007 © The OpenCiphers Project

Introduction to WPA

 For every possible PMK compute PTK and see if it
matches the handshake captured on the network

ClubHACK 2007 2007 © The OpenCiphers Project

FPGA coWPAtty

 Uses 8 SHA-1 Cores
 Uses BlockRAM to buffer the words fed to the

cores
 As long as the machine is able to supply words

fast enough, the SHA-1 cores will be utilized
fully

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

Cowpatty
800MHz P3 ~25/sec
3.6GHz P4 ~60/sec
AMD Opteron ~70/sec
2.16GHz IntelDuo ~70/sec

Aircrack
3.6GHz P4 ~100/sec

FPGA

Cowpatty
LX25 ~430/sec
1 5 Cluster ~6,500/sec
LX50 ~650/sec

ClubHACK 2007 2007 © The OpenCiphers Project

Results

 Decided to compute hash tables for a 1,000,000
passphrase wordlist for the top 1,000 SSIDs

“That million word list that I fed you incorporated a
430,000 word list from Mark Burnett and Kevin Mitnick
(of all people) and was made up of actual harvested
passwords acquired through some google hacking.
They are passwords that people have actually used. I
padded it out to 1 million by adding things like
websters dictionary, and other such lists, and then
stripped the short word (<8 chars.) out of it.”

ClubHACK 2007 2007 © The OpenCiphers Project

Results

 Finally have the 40GB WPA tables on the tubes
 Thanks Shmoo! (3ricJ & Holt!)
 Check the Torrent trackers for seeds
 CoWPAtty FPGA support has recently been

added to wicrawl

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Pairing bluetooth devices is similar to wifi
authentication

 Why not crack the bluetooth PIN?
 Uses a modified version of SAFER+
 SAFER+ inherently runs much faster in

hardware
 Attack originally explained and published by

Yaniv Shaked and Avishai Wool
 Thierry Zoller originally demonstrated his

implementation at hack.lu

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 How it works
 Capture a bluetooth authentication

(sorry, requires an expensive protocol analyzer)
 This is what you'll see

Master
in_rand
m_comb_key

m_au_rand

m_sres

Slave
master sends a random nonce

s_comb_key sides create key based on the pin
master sends random number

s_res slave hashes with E1 and replies
s_au_rand slave sends random number

master hashes with E1 and replies

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Just try a PIN and if the hashes match the
capture, it is correct

 Extremely small keyspace since most devices just
use numeric PINs (1016)

 My implementation is command line and should
work on all systems with or without FPGA(s)

ClubHACK 2007 2007 © The OpenCiphers Project

 FPGA Implementation
 Requires implementations of E21, E22, and E1 which

all rely on SAFER+
 Uses 16-stage pipeline version of SAFER+ which feeds

back into itsself after each stage
 To explain, here's some psuedocode

Bluetooth PIN Cracking

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+
16 PINs16 PINs

E22

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Output loops back and SAFER+ now does
E21 for the Master

16 clock cycles laterE21

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then does the second E21 for the Slave
and combines the keys to create the link key

16 clock cycles laterE21

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Slave

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Slave

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Master

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Master

16 clock cycles laterE1

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then checks all of the sres values to see if any match
while the process starts over

16 clock cycles laterE22

CompareSRES

Stop
N Y

ClubHACK 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 If the cracker stops the computer reads back
the last generated PIN from the pin generator to
determine what the valid PIN was

 The last generated PIN – 16 should be the
cracked PIN

 I built a commandline version
 Thierry Zoller integrated support into BTCrack
 I added some hollywood FX !

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

btpincrack
3.6GHz P4 ~40,000/sec

BTCrack
3.6GHz P4 ~100,000/sec

0.24 secs to crack 4 digit
42 min to crack 8 digit

FPGA

btpincrack
LX25 ~7,000,000/sec
15 Cluster ~105,000,000/sec
LX50 ~10,000,000/sec

0.001 secs to crack 4 digit
10 secs to crack 8 digit

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Somewhat proprietary standard
 No open source code available (until now!)
 Format

 Uses the standard ZIP format
 Adds a new compression type (99)
 Uses PBKDF2 (1000 iterations) for key derivation
 Individual files can be encrypted inside the ZIP file
 Supports 128/192/256-bit key lengths
 Uses a 16-bit verification value to verify passwords
 Otherwise you verify by using the checksum
 Uses a salt (sorry, can't do a dictionary attack!)

ClubHACK 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Cracking algorithm
 Scan through ZIP file until you find the encrypted file
 Get the 16-bit password verification value
 Hash a password with PBKDF2 and see if the

verification value matches
 No – Try next password
 Yes – Decrypt file and see if checksum matches

 No – Try next password
 Yes – Password found!

ClubHACK 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Uses the same PBKDF2 core as the WPA and
FileVault cracking code

 Requires extra iterations for longer key lengths
 Tool takes a ZIP file, encrypted file name, and

dictionary file as input

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

winzipcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

winzipcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 “FileVault secures your home directory by
encrypting its entire contents using the
Advanced Encryption Standard with 128-
bit keys. This high-performance algorithm
automatically encrypts and decrypts in
real time, so you don’t even know it’s
happening.”

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 We wanted to know what was happening

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Stores the home directory in a DMG file
 DMG is mounted when you login
 hdi framework handles everything
 Blocks get encrypted in 4kByte “chunks” AES-

128, CBC mode
 Keys are encrypted (“wrapped”) in header of

disk image
 Wrapping of keys done using 3DES-EDE
 Two different header formats (v1, v2)
 Version 2 header: support for asymmetrically

(RSA) encrypted header

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Apple's FileVault
 Uses PBKDF2 for the password hashing
 Modified version of the WPA attack can be used

to attack FileVault
 Just modified the WPA core to 1000 iterations

instead of 4096
 Worked with Jacob Appelbaum & Ralf-Philip

Weinmann to reverse engineer the FileVault
format and encryption

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Login password used to derive key for
unwrapping
 PBKDF2 (PKCS#5 v2.0), 1000 iterations

 Crypto parts implemented in CDSA/CSSM
 DiskImages has own AES implementation,

pulls in SHA-1 from OpenSSL dylib

 “Apple custom” key wrapping loosely
according to RFC 2630 in Apple's CDSA
provider (open source)

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 vfdecrypt (Ralf Philip-Weinmann & Jacob Appelbaum)
 Will use the same method with a correct password to

decrypt the DMG file and output an unencrypted DMG
file

 Result can be mounted on any system without a
password

 vfcrack (me!)
 Unwrap the header
 Use header to run PBKDF2 with possible passphrases
 Use PBKDF2 hash to try and decrypt the AES key, if it

doesn't work, try next passphrase
 With the AES key decrypt the beginning of the DMG file

and verify the first sector is correct (only needed with
v2)

ClubHACK 2007 2007 © The OpenCiphers Project

VileFault

 Other attacks
 Swap

 The key can get paged to disk (whoops!)
 Encrypted swap isn't enabled by default

 Hibernation
 You can extract the FileVault key from a hibernation file
 Ring-0 code can find the key in memory

 Weakest Link
 The password used for the FileVault image is the same as

your login password
 Salted SHA-1 is much faster to crack than PBKDF2 (1

iteration vs 1000)
 The RSA key is easier to crack than PBKDF2

ClubHACK 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

vfcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

vfcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Capturing GSM Traffic
 GNU Radio USRP board ($900 USD)
 We developed software to decode GSM
 Lets you fire up wireshark on a GSM channel
 Can sometimes capture SMS messages
 Couldn't capture voice calls :-(
 We wanted to change that

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Luckily you don't need to break crypto

 India
 IDEA - A5/0
 AirTel - A5/0
 Essar - A5/0
 Orange - A5/0
 Dolphin - A5/0

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Focusing on A5/1
 Used widely throughout the US, Europe, and some

Asian countries
 The strongest algorithm for GSM (3G is better)
 Looking at only practical attacks
 Originally looked at ciphertext only attacks
 Found out that there is a lot of known-plaintext
 Known-plaintext attacks are a lot easier

 Researched a few different attacks
 Real-time attack with known-plaintext + FPGAs

 Anderson & Roe / Keller + our mods
 Pre-computation + less FPGAs

 Biryukov, Shamir, & Wagner + our mods

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 A register is clocked if it's clocking bit agrees with
the majority

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 First 64 clock cycles key is xor'ed with registers
here

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Second, 22-bit frame number is xored in here

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Third, A5/1 is run for 100 clock cycles

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 And then the output is xor'ed with the plaintext

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Using known-plaintext you can reduce the
keyspace by brute forcing R1/R2 and calculating
a matching R3 using the plaintext as parity

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Output bits are related to register bits

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Must essentially brute force the clock bits

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Certain clock bit possibilities can be initially ruled
out by looking at registers that don't get clocked
and output doesn't match

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 After a while certain possibilities can be ruled out
by clock bits not matching output

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 And possibilities can be ruled out once the tap
bits are computed and propagate up the registers

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 With enough known-plaintext you will be able to
resolve all possible R1/R2 down to a valid R3

ClubHACK 2007 2007 © The OpenCiphers Project

Results

 FPGA code requires around 6000 clock cycles for
each R1/R2 state

 100 cores at 100MHz will do 1.6M per sec
 One FPGA will crack key in 15 days
 100 FPGAs will crack in 3.6 hours
 PCs will take a really long time (~2,000 times

slower)
 (code is free and available if you want to offload it

to your botnet ;-)

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Once the internal state of A5/1 is derived you can
reverse clock A5/1 back to the state after the key
is mixed in

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 To reverse A5/1 you calculate the only states for
the clocking bits that are possible

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Eventually there are only a few possibilities left

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time attack

 This can be done quickly in software
 Because there are multiple possible states you need

multiple packets to locate the correct state
 2 packets is enough, we happen to have 4
 Calculate the possible initial states for 2 packets
 Find the possible state that's common between the two

ClubHACK 2007 2007 © The OpenCiphers Project

Decrypting Packets

 If you have the A5/1 state after the key is mixed in
 It is the same as having the key
 You can mix in any frame number and generate

the proper A5/1 output to xor to any ciphertext or
plaintext

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Reversing 64-bits of A5/1 output to 64-bits of A5/1
internal state
 Essentially the same concept as a one-way function
 Rainbowtables are good at reversing one-way

functions
 Decided to focus on building a table of 2^58
 1/64 chance of finding the key with a given packet
 We have 200 different 64-bit A5/1 outputs
 Good chance that we'll find the key

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Time-space tradeoff basics
 You have a one-way function

in out

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Time-space tradeoff basics
 You have a one-way function
 You need to find the in that created an out

in out

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Naïve implementation
 Pre-computation

 Compute and store all possible in/out's
 Real-time

 Search through table until you find your out, it's in is the key

in out

0 8
1 2
2 5
3 1

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Basic time-space tradeoff implementation
 Pre-computation

 Compute an in -> out, and then take the out and compute
another out, etc. (using a “reduction function”)

 Just store the start and end values of the chain

in R(out) ...

0 8
1 2
2 5
3 1

R(out)

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Basic time-space tradeoff implementation
 Real-time

 To reverse a hash, you compute a chain for your out value and
compare all out values with all of the end points in your table

 When you find a matching one, compute a chain from it's start
value

 Your in will be right before your out in its chain

My out ...

0 8
1 2
2 5
3 1

? ? ? ?

out

R(out) R(out)

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Problems with time-space tradeoff
 Algorithms have collisions (especially when you're

mapping output to input which have differing entropy)
 Collisions cause chains to merge or loop
 Different algorithms are used to mitigate this

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Different time-space tradeoff algorithms
 Basic

 Use a different reduction function for different tables
 Increase the amount of tables you have depending on how

collision prone your algorithm is
 Distinguished Points

 Instead of having all of your chains be the same length you
stop when you see a certain pattern of bits

 You can detect collisions and reject chains by looking for other
chains that end in the same distinguished point

 Rainbow
 Use a different reduction function for each stage of the chain
 Requires more real-time computation

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Distinguished Points
 We first assumed that it wasn't very collision prone
 Turned out we were wrong
 Very efficient on FPGAs because it requires really low

bandwidth and table lookups
 Can be used to speed up the real-time lookup phase
 Requires lots of tweaking to find the right parameters to

provide the least number of collisions and loops

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Rainbow tables
 Provides the best collision resistance
 Requires a lot of real-time computation

n(n+1)/2 * chain_length
 The real-time computation can be done on an FPGA

(not as well as DP attack)
 Best attack parameters we could come up with

 Requires 5TB of disk storage
 Can reverse a key in 5 min with 1 FPGA
 Multiple FPGAs can be used to parallelize cracking multiple

keys
 You can adjust table to use less storage and require

more time

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Final Analysis
 Talked to Elad Barkan
 Distinguished Points was the best solution
 Had to reduce chain length to provide the best

collision/loop resistance (average length of 2^19)
 Used a different reduction function for each table
 Provides around 40% coverage (rainbow table

provided only ~20%)
 Still deciding on the best parameters for the tables

ClubHACK 2007 2007 © The OpenCiphers Project

Pre-computation Attack

 Limiting factor right now is pre-computation
 Computing 2^58 requires ~ 100 FPGAs running for 2

months (6,000 times slower on PCs)
 We have a cluster of 70 FPGAs ready to start

computing
 Once the parameters are finalized we'll be able to

compute a full table in ~3 months
 Will be the largest rainbowtable ever built

 Typical Lanman rainbowtables cover 2^36 at most
 This will be 4 million times larger

 Resulting table will be 2TB

ClubHACK 2007 2007 © The OpenCiphers Project

Real-time Attack

 Result
 Because of hard drive access time it will need to be

spread across multiple hard drives
 6 hard drives and 1 FPGA will crack a conversation in

~30 min
 Double the hard drives and FPGAs to halve the time
 32 FPGAs and a network of 200 PCs will crack a

conversation in < 1 minute

ClubHACK 2007 2007 © The OpenCiphers Project

FPGA Implementation

 Implementation
 Implemented A5/1 as a 64-stage pipeline
 Much more efficient than state-machines
 Get 1 A5/1 per clock cycle
 Output is looped back into the input (after reduction

function is applied) until the last 19 bits are 0
 Results are written to BlockRAM which is polled by the

PC
 Each core runs at 200MHz and 5 cores fit on an LX50
 Total A5/1's/sec is 200,000,000 * 5 = 1,000,000,000
 Single CPU does around 150,000/sec

Demo

ClubHACK 2007 2007 © The OpenCiphers Project

The A5 Cracking Project

 Currently building 2TB table
 Will eventually build the 28TB table
 If you want to help, check out wiki.thc.org/gsm

ClubHACK 2007 2007 © The OpenCiphers Project

Hardware

 Pico E-16
 ExpressCard 34

 2.5Gbps full-duplex
 Virtex-5 LX50
 32MB SRAM
 External ExpressCard Chip

ClubHACK 2007 2007 © The OpenCiphers Project

Hardware

 E-16 SuperCluster
 Up to 77 E-16's
 2 Quad-core Xeon's
 8GB of RAM
 6TB HDD Space

Equivalent computing
power of ~400,000 CPUs
for cracking A5/1

ClubHACK 2007 2007 © The OpenCiphers Project

Conclusion

 Get an FPGA and start cracking!
 Make use if your hardware to break crypto
 <64-bit just doesn't cut it anymore
 Choose bad passwords (please!)

ClubHACK 2007 2007 © The OpenCiphers Project

Thanks

 Aaron Peterson (wicrawl)
 The Church of WiFi (CoWPAtty)
 Jacob Appelbaum & Ralf-Philip Weinmann

(FileVault)
 Thierry Zoller & Eric Sesterhenn (BTCrack)
 Steve, Josh, & The Hacker's Choice Cr3w

(A5 Cracking Project)
 The Shmoo Group (bittorrent seeding)
 Viewers like you

ClubHACK 2007 2007 © The OpenCiphers Project

Questions?

 David Hulton
 david@toorcon.org
 http://openciphers.sf.net
 http://www.picocomputing.com
 http://www.toorcon.org

