
Hacking Web 2.0
Art and Science of Vulnerability Detection

Shreeraj Shah
Pune,India

• Founder & Director
– Blueinfy Solutions Pvt. Ltd. (Brief)

• Past experience
– Net Square, Chase, IBM & Foundstone

• Interest
– Web security research

• Published research
– Articles / Papers – Securityfocus, O’erilly, DevX, InformIT etc.
– Tools – wsScanner, scanweb2.0, AppMap, AppCodeScan,

wsChess etc.
– Advisories - .Net, Java servers etc.

• Books (Author)
– Hacking Web Services (Thomson 2006)
– Web Hacking (AWL 2003)
– Web 2.0 Security (Work in progress)

http://shreeraj.blogspot.com
shreeraj@blueinfy.com

Who am I?

Agenda

• Web 2.0 overview and security concerns
• Ajax Security – Attacks and Defense

– Methods
– Vectors
– Defense

• Web Services – Attacks and Defense
– Methodology
– Assessment and Tools
– Defense

Web 2.0 Trends
• 80% of companies are investing in Web

Services as part of their Web 2.0 initiative
(McKinsey2007 Global Survey)

• By the end of 2007, 30 percent of large
companies will have some kind of Web 2.0-
based business initiative up and running.
(Gartner)

• 2008. Web Services or Service-Oriented
Architecture (SOA) would surge ahead.
(Gartner)

Web 2.0 – Ajax & Web Services

HTML / JS / DOM

RIA (Flash)

Ajax

Browser

Internet

Blog

Local Application

Database Authentication

Internet
Weather

News

Documents

Emails

Bank/Trade

RSS feeds

Web Services

Widget DOM
HTML/CSS JavaScript

SOAP
XML-RPCJSON

XML

Open APIs
SaaS

Services
REST

Browser Protocols

Web 2.0 Layers

Ajax Flash / RIA
JSON-RPC

Structures Server-Side

HTTP(S)

Technologies

Web
Server

Static pages
HTML,HTM etc..Web

Client

Scripted
Web

Engine
Dynamic pages

ASP DHTML,
PHP,CGI Etc..

DB

X
ASP.NET with

.Net
J2EE App

Server
Web Services

Etc..

Application
Servers

And
Integrated
Framework

Internet DMZ Trusted

Internal/Corporate

WW
EE
BB

SS
EE
RR
VV
II
CC
EE
SS

Ajax
RIA

Client

SOAP, REST, XML-RPC, JSON etc.

Web 2.0 Security

• Complex architecture and confusion with
technologies

• Web 2.0 worms and viruses – Sammy,
Yammaner & Spaceflash

• Ajax and JavaScripts – Client side attacks
are on the rise

• Web Services attacks and exploitation
• Flash clients are running with risks

Ajax Security – Attacks & Defense

• Basics
• Structures and streams
• Fingerprinting
• Scanning and Enumeration
• XSS and CSRF issues
• Securing code base

Ajax basics

• Asynchronous JavaScript and XML

HTML / CSS

JS / DOM

XMLHttpRequest (XHR)

Database / Resource

XML / Middleware / Text

Web Server

Asynchronous
over HTTP(S)

Ajax - Sample
function loadhtml()
{

var http;
if(window.XMLHttpRequest){

http = new XMLHttpRequest();
}else if (window.ActiveXObject){

http=new ActiveXObject("Msxml2.XMLHTTP");
if (! http){

http=new ActiveXObject("Microsoft.XMLHTTP");
}

}
http.open("GET", "main.html", true);
http.onreadystatechange = function()
{

if (http.readyState == 4) {
var response = http.responseText;
document.getElementById('main').innerHTML = response;

}
}
http.send(null);
}

Ajax & Data structures

• Ajax is using various data streams
• Developers are innovating this field
• JavaScript can talk with back end sources
• Mashups application can be leveraged
• It is important to understand these streams
• It has significant security impact
• JSON, Array, JS-Object etc.

Cross-domain calls

• Browser security doesn’t support cross
domain calls

• But cross domain callback with JavaScript
is possible

• This can be lethal attack since cross
domain information get executed on the
current DOM context.

• Developers put proxy to bypass the SOP.

Ajax fingerprinting

• Determining Ajax calls
• Framework fingerprinting
• Running with what?

– Atlas
– GWT
– Etc.

• Ajaxfinger a tool to achieve this
• Can help in assessment process
• RIA finger printing is possible

Ajax attack points

• Ajax components & Widgets
• Cross domain vulnerable browsers and

callback implementations
• DOM manipulation calls and points
• Insecure eval()
• HTML tags
• Intranet nodes and internal resources

Ajax attack vectors

• Entry point scanning and enumeration
• Cross site scripting (XSS) attacks
• Cross site Request Forgery (CSRF) issues
• Client side code reverse engineering
• Security control and validation bypassing
• Local privacy information enumeration
• Ajax framework exploitation – known bugs

Ajax Scanning

• Scanning Ajax components
• Retrieving all JS include files

– Part of <SCRIPT SRC=….>
• Identifying XHR calls
• Grabbing function
• Mapping function to DOM event
• Scanning code for XSS – look for eval()

and document.write()

Ajax serialization issues

• Ajax processing various information
coming from server and third party
sources. – XSS opportunities
message = {

from : "john@example.com",
to : "jerry@victim.com",
subject : "I am fine",
body : "Long message here",
showsubject :

function(){document.write(this.subject)}
};

XSS

Ajax serialization issues

• JSON issues

• JS – Array manipulation

{"bookmarks":[{"Link":"www.example.com","D
esc":"Interesting link"}]}

new Array(“Laptop”, “Thinkpad”, “T60”,
“Used”, “900$”, “It is great and I have
used it for 2 years”)

Ajax and JS manipulation

• JavaScript exploitation – XSS
• Identifying DOM points like

document.write()
• Eval() – another interesting point
• Attack APIs and tools for exploitation
• Lot can be done by an attacker from

session hijacking to key loggers

Ajax and RSS injection

• RSS feeds are another entry point to the
browser

• Injecting script to the RSS feeds and Ajax
call may execute it.

• One click – Malformed linked injected into
it and can lead to exploit “javascript:”

• Leveraging events – onClick, onMouse
etc.

Ajax Crawling

• Crawling Ajax driven app – a challenge
• Resources are hidden in JavaScript
• Simple scanner will fail
• Crawling with actual DOM context
• Automated crawling with browser is

required
• How?

Defending Ajax

• No business logic information on client
side.

• Do not trust third party source – filter it out
• No direct cross domain call back
• Filtering at browser level before

processing information
• Avoiding client side validation

Defending Ajax

• No secret in Ajax calls
• Proper data structure selection and

frameworks
• Avoid client side validation
• Securing client side calls like eval() and

document.write()
• HTML tags filtering before serving to end

client

Web Services – Attacks & Defense

• Methodology
• Footprinting & Discovery
• Profiling and Enumeration
• Scanning and Fuzzing
• Attack vectors
• Scanning code for vulnerabilities
• Defense by filtering

Methodology

Footprinting & Discovery

Enumeration & Profiling

Vulnerability Detection

Code / Config Scanning

Web Services Firewall

Secure Coding

Insecure Web Services

Secure Web Services

Blackbox Whitebox

Defense
&
Countermeasure

Footprinting and Discovery

• Objective: Discovering Web Services
running on application domain.

• Methods
– Primary discovery

• Crawling and spidering
• Script analysis and page scrubbing
• Traffic analysis

– Secondary discovery
• Search engine queries
• UDDI scanning

Primary Discovery

• Crawling the application and mapping file
extensions and directory structures, like
“.asmx”

• Page scrubbing – scanning for paths and
resources in the pages, like atlas back end
call to Web Services.

• Recording traffic while browsing and
spidering, look for XML based traffic –
leads to XML-RPC, REST, SOAP, JSON
calls.

Primary Discovery - Demos

• Page scanning with grep – Look in
JavaScripts for URLs, Paths etc.

• Crawling – Simple!
• Scanning for Atlas references –

Framework creates stubs and proxy. –
scanweb2.0/scanatlas

• Urlgrep can be used as well.

Secondary Discovery

• Searching UDDI server for Web Services
running on particular domain.
– Three tactics for it – business, services or

tModel.
• Running queries against search engines

like Google or MSN with extra directives
like “inurl” or “filetype”
– Look for “asmx”

• wsScanner – Discovery!

Enumerating and Profiling
• Scanning WSDL

– Looking for Methods
– Collecting In/Out parameters
– Security implementations
– Binding points
– Method signature mapping

Scanning strategies
• Manual invocation and response analysis.
• Dynamic proxy creation and scanning.
• Auto auditing for various vectors.
• Fuzzing Web Services streams – XML or

JSON
• Response analysis is the key

– Look for fault code nodes
– Enumerating fault strings
– Dissecting XML message and finding bits
– Hidden error messages in JSON

Cross Site Scripting (XSS)

• XSS is possible through Web Services.
• It would be DOM based XSS via eval().
• JSON-RPC based stream coming in the

browser and get injected into DOM.
• Source of stream can be of third party and

Un-trusted.
• XML streams coming in the browser and

can cause XSS via document.write call.

Injection Flaws

• Web Services methods are consuming
parameters coming from end users.

• It is possible to inject malicious characters
into the stream.

• It can break Web Services code and send
faultsting back to an attacker

• Various injections possible – SQL and
XPATH

Malicious File Execution

• Malicious command can be injected
through the parameter.

• WS supports attachments as well and that
can lead to uploading a file.

• This can give remote command execution
capability to the attacker.

Insecure Direct Object Reference

• Injecting characters to break file system
sequences.

• Faultcode spits out internal information if
not protected.

• Customized error shows the file refernces.
• Access to internal file and full traversal to

directories
• Inspecting methods and parameters in the

profile stage can help.

Cross Site Request Forgery

• CSRF with XML streams
• XML-RPC or SOAP based request can be

generated from browsers.
• Splitting form and XML injection is

possible – interesting trick.
• If Content-Type is not validated on the

server then it can cause a potential CSRF.
• XForms usage in browser can produce

XML requests to attack CSRF.

Code Analysis for Web Services

• Scanning the code base.
• Identifying linkages.
• Method signatures and inputs.
• Looking for various patterns for SQL,

LDAP, XPATH, File access etc.
• Checking validation on them.
• Code walking and tracing the base - Key

• Regular firewall will not work
• Content filtering on HTTP will not work

either since it is SOAP over HTTP/HTTPS
• SOAP level filtering and monitoring would

require
• ISAPI level filtering is essential
• SOAP content filtering through

IHTTPModule

Code filtering with IHTTPModule

HTTP Stack for .Net
HttpRuntime

HttpApplicationFactory

HttpApplication

HttpHandlerFactory

IHttpModule

Handler

Web Application
Firewall
& IDS

148

IHTTPModule for Web Services Firewall

• Code walkthrough – Events and Hooks
• Loading the DLL
• Setting up the rules
• Up and running!
• Demo.

Thanks!

• Questions?

– shreeraj@blueinfy.com

