
Insecure Implementation of

Security PracticesSecurity Practices

Karmendra Kohli

Director, Co-founder

Agenda

• Talk about insecure implementation of

security practices for

– Salted Hashing

– CAPTCHA– CAPTCHA

– Browser Caching

Why do we need authentication

• Abstraction of Lock and Key

– Humans are used to and comfortable with the

concept

• Explicit Authentication happens only once• Explicit Authentication happens only once

– Implicit authentication with each request

Threats to passwords

• In the Host

– Can be found in Memory or Browser History

• Network

– Can be sniffed or found in proxy logs– Can be sniffed or found in proxy logs

• Database

– If stored in clear-text, compromise of DB leads to

complete compromise

– Backup tapes etc

Securing Credentials

• Denote password by ******** in the form field
– Can be guessed

• Implement strong password policy
– Can be stolen

• Base64 Encoding• Base64 Encoding
– Can be decoded

• Encrypting the password
– Can be decrypted

• Hashing the password
– Our story begins from here…

Hashing

• Cryptographic Hash Function is a
transformation that takes an input and returns
a fixed-size string, which is called the hash
value. – From Wikipedia

• One way hashes cannot be reversed, they can
only be compared

– Just like finger prints

• A strong one-way hash will have minute
probability of collision

Use of hashing

• Authentication

• Message Integrity

• Digital Signatures

Is just a hash secure?

• Hash can be stolen from the

– memory

– browser history

– network by sniffing

– proxy logs – proxy logs

• We can replay the hash instead of the clear

text password

– Does not need to be reversed for authentication

Hash with a pinch of salt

• Salted hash

– Aims at implementing a one time password

scheme

– Each time the password of the user transmitted – Each time the password of the user transmitted

from the client is different

– Even if stolen cannot be reused/replayed

Well That Is The Aim!!

The Working Steps
1. With each request to the login page by the user,

the server generates a random number, the salt,
and sends it to the client along with the login
page.

2. A JavaScript code on the client computes the
hash of the password entered by the user.hash of the password entered by the user.

3. The salt is concatenated with the computed
hash of the password to re-compute the hash of
the concatenated string (let this salted hash be
‘A’).

4. The result i.e. ‘A’ generated in the previous step
is sent to the server along with the username.

The Working Steps
5. On the server side - the application retrieves the

hashed password for the corresponding
username from the database.

6. The hashed password fetched from the database
is concatenated with the salt (which was earlier
sent to the client) stored at the server. Hash of sent to the client) stored at the server. Hash of
the concatenated string is calculated at the
server (let this salted hash be B).

7. If the user entered the correct password then
these two hashes (A & B) should match. The
server compares these two hashes and if they
match, the user is authenticated.

8. The salt is then deleted from the server side

Insecure Implementations

1. Generating salt on client side

Generating salt on client side

Generating salt on client side

• So we have all values that server needs to

calculate the salted hash

• It is enough to replay the values

• Beats goal of using salts• Beats goal of using salts

2. Using a limited set of salts

• The number of salts being used by the server

is fixed

• Above replay technique works

– We just need to try multiple number of times– We just need to try multiple number of times

3. Using same salt for same user

• In this case the salted hash was stored by the

developer in the DB

– Gives a ‘feeling’ of more security

• If salted hash is stored as password, then salt • If salted hash is stored as password, then salt

too needs to be stored ☺

• Hence same salt is sent each time - replay

4. Not re-initializing the salt for login

pages

• Multiple logins from the same browser

resulted in same salt being used

• Salt not deleted from the server side on

successful or unsuccessful authenticationsuccessful or unsuccessful authentication

• Problem is also related to not re-initializing

the session after successful or unsuccessful

authentication

• Attack window is small, but still…

5. Transmitting clear text password

along with salted hash

• Many implementations observed

• The salted hash is sent along with clear text

form input fields

• The salted hash is computed using different • The salted hash is computed using different

set of hidden variables

Transmitting clear text along with

salted hash

6. Not re-initializing the java script

variables

• Uname = Document.form1.textbox1.value

• Pwd = Document.form1.textbox2.value

• Use the and ‘pwd’ variable for salted hash

calculationcalculation

– Hash = Hfx (pwd)

– Hash = Hfx (Hash + salt)

• The uname and pwd can be found as clear text

in memory

Not re-initializing the java script

variables

7. Storing password in clear text in

database

• Hash = hash (password + salt)

• Server does not store salt in the database

• Clearly implies that server also does not store

hash of password in databasehash of password in database

Salted Hash Best Practices

• Salt
– Generated on server side

– Must be highly random. Must use cryptographically
strong PRNG algorithm

– Must never be stored in the database– Must never be stored in the database

– Must be re-generated after each successful
/unsuccessful attempt

– All temporary Form Field or JS variables must be set to
null before submitting the request

• Passwords must be stored in hashed format in
the database

CAPTCHA

• Completely Automated Public Turing Tests to Tell

Computers and Humans Apart

• Aim is to introduce an entity that requires human
intervention

• Protection against DOS or Brute force or Misuse

– Avoiding automating submissions

Typical uses

• Public Forms

– Registration

– Feedback / Rating

– Survey– Survey

– Blog post

– Appointment/Slot booking

CAPTCHA - Implementation

• Initiate a session for the page rendered

• Request for image

• Generate unique string randomly on server side

• Generate image with string embedded

• Remember the string in Session Object and send • Remember the string in Session Object and send
CAPTCHA to client

• For each client request, validate the sent value with the
one in the session object

• Invalidate session after each attempt
– Both successful and unsuccessful

• Generate new CAPTCHA for each new page request

Insecure Implementation

• We are not focusing weakness of CAPTCHA

generation

– It’s a different ball game

• We will discuss common implementation • We will discuss common implementation

flaws of using CAPTCHA’s

1. Verifying CAPTCHA on client side

• The client side JavaScript verifies the CAPTCHA

value

• Server trusts the decision of client

strPassFlag=True;strPassFlag=True;

• Completely bypass enforcement

• Automate submission

2. Having a limited set words

• Small fixed pool of CAPTCHA words

• Automated tools will have high probability of

hits

• Bypass goal of implementing CAPTCHA• Bypass goal of implementing CAPTCHA

What better than a COMBO

Limited pool of Limited pool of Limited pool of Limited pool of
CAPTCHA values with CAPTCHA values with CAPTCHA values with CAPTCHA values with
client side verificationclient side verificationclient side verificationclient side verification

3. Validate CAPTCHA on server but

value sent from client

• Actual value of CAPTCHA sent as hidden

variable

– Hmmmmm, “hidden” does not mean “secure”

• Replay request with value of our choice• Replay request with value of our choice

4. Session is not re-initialized

• Session not re-initialized after form

submission

• Refresh on submitted page works

• Automate replay of requests using assigned • Automate replay of requests using assigned

session ID

• Multiple registrations

– Treasure trove for spammers

5. Image ID can be replayed

• The request for image is of the form

• <img src =

http://www.testserver.com/image_draw.jsp?I

D=23erdfret45ffrsd4g3fd3sa3a4d5aD=23erdfret45ffrsd4g3fd3sa3a4d5a

• The image_draw.jsp decrypts the value to get

the word

• For the same value the same word is rendered

ALWAYS

• Replay image request

Client Server

Step#1: Request for Public FORM

Step#4: Generate an image Step#4: Generate an image Step#4: Generate an image Step#4: Generate an image

based on unique token (X1) & based on unique token (X1) & based on unique token (X1) & based on unique token (X1) &

store in the session object.store in the session object.store in the session object.store in the session object.

Step#2: Form with

Step#3: Request for Image

Image ID can be replayed

store in the session object.store in the session object.store in the session object.store in the session object.

Step#5: Form rendered with image

Step#6: FORM Submission
Step#7: Validation with string Step#7: Validation with string Step#7: Validation with string Step#7: Validation with string

stored in the session object.stored in the session object.stored in the session object.stored in the session object.

• Step 2 can be replayed

6. CAPTCHA is not an image

• One application had a ‘feeling’ of an image

• Java Script used for rendering the text on the

page in a “different” font

• Tools can read such text easily• Tools can read such text easily

Text can be selected ☺☺☺☺

CAPTCHA implementation best

practices

CAPTCHA:

– Generated on server side

– Verified on server side

– Strings must be randomly generated– Strings must be randomly generated

– Images must not be generated based on token

from ‘hidden’ client side

– Must be bound to a session

– Must be re-generated after each successful

/unsuccessful attempt

Caching Issues

• Unauthorized access to information

User NameUser Name User

Logged off
CC No
SB Account No

Submit

Back

Login

User NameUser Name

PasswordPassword

Sign In
Submit

Sign OutSign Out

Logged off

Thank You

SB Account No

Account Details

Browser Cache

• A local store

– Aims to improve performance

– Renders pages locally, fast user experience

– Support across browsers– Support across browsers

• Controlled by a lot many directives

– Pragma: no-cache

– Cache-control: no-cache

– Expires: Mon, 03 Jul 2000 9:30:41 GMT

Caching

• Relevant HTTP fields
• Request

o If-Modified-Since
o Pragma: no-cache

• Response
o Last-Modified
o Expires: Mon, 03 Apr 2009 9:30:41 GMT
o Cache-Control: no-cache, no-store

Caching

• Relevant HTTP fields
• Request

o If-Modified-Since – Recheck for fresh content
o Pragma: no-cache – HTTP 1.0

• Response
o Last-Modified – Confirm fresh content
o Expires: ………… – HTTP 1.0
o Cache-Control: no-cache – Pages will not be

displayed, but will still be stored
o Cache-Control: no-store – Pages will not be stored

Caching best practice
• For critical applications

• Cache-Control: no-cache and Cache-

Control: no-store must be set for ALL pages

Example Implementation flaw
• Banking application

– Ideally all pages must be fetched fresh

–Clicking on ‘back’ must not render page

–All pages set with Cache-Control: no-cache, –All pages set with Cache-Control: no-cache,

no-store

–excepting logout page

–On logout, an intermediate proxy used to

serve logout page

– Session was not invalidated as request did

not reach server

karmendra.kohli@secureyes.net

